
An Introduction to UNIXinthe department of physicsatThe University of South Florida
David A. Rabson

March 1996, most recently edited August 2006 for Physics Z-5156. (While I have tried to root outmost old references, some undoubtedly remain, for which I apologize.)

(i) Make each program do one thing well. To do a new job, build afresh rather than complicate old programs byadding new features.(ii) Expect the output of every program to become the input to another, as yet unknown, program. Don't clutteroutput with extraneous information. Avoid stringently columnar or binary input formats. Don't insist on interactiveinput.(iii) Design and build software, even operating systems, to be tried early, ideally within weeks. Don't hesitate tothrow away the clumsy parts and rebuild them.(iv) Use tools in preference to unskilled help to lighten a programming task, even if you have to detour to build thetools and expect to throw some of them out after you've �nished using them.from M.D. McIlroy, E.N.Pinson, and B.A. Tague Unix Time-Sharing SystemForward, The Bell System Technical Jounal, July -Aug 1978 vol 57, number6 part 2, p. 1902.
The author wishes to thank Christopher Myers, N. David Mermin, Todd Olson, Dan Sullivan, Stephen Langer, andWilliam Newman for comments on earlier editions. He thanks John Wilkins for donating his lists of vi and jove com-mands, the latter of which have been adapted to emacs, and especially thanks Arthur Smith, the co-author of an earlieredition, for permission to revise the manual. The author takes full responsibility for the objectionable personal opinionsexpressed here and for the pedagogy of inundation. This document was set in gtro� on a Sun Ultra 60 with parts inTEX.

Note on the December 1995 edition: UNIX has become a far more complicated operating system than it was whenArthur Smith and I wrote the �rst two editions of this manual, then titled An Introduction to UNIX at the Labora-tory of Atomic and Solid State Physics. Agreement on the `̀ standard places'' for �les no longer exists, and manualpages, executables, and libraries are now scattered all over the system. Symbolic links, run-time libraries, TEX,and X Windows all add to what the beginning user must learn. Worse, a dozen subtly di�erent versions, in two a-vors, of the operating system mean that commands that work on machine X don't on machine Y. Nonetheless, theunderlying simplicity of the UNIX philosophy remains. I hope to help the reader �nd it.
Note on June 1990 edition: several people have made useful suggestions for changes and additions to this bookletthat could easily have tripled its size. I believe that 22 pages is the right length, or perhaps even too long, so I havenot tried to address all the issues.

1 This manual ... 12 Conventions ... 13 Introduction: Why UNIX? (or, `̀ what is an operating system?'') .. 14 Logging In and Out and Getting Started .. 25 Commands and Information Useful to the Beginner ... 35.1 Useful control characters ... 35.2 ls (list �les) and the UNIX �lesystem .. 35.3 looking at �les: cat and more (and the shell's I/O redirection) .. 45.4 moving and copying �les ... 55.5 man and apropos: where to �nd help .. 55.6 mail ... 65.7 UNIX editor: vi ... 75.8 If the terminal starts acting strangely .. 75.9 Printing ... 75.10 What's Going On with the System ... 75.11 General Information about UNIX commands .. 76 Introduction to the Csh ... 97 Another Editor (Emacs) .. 108 Programming ... 118.1 Why C? .. 118.2 section(3) .. 138.3 section(2) .. 158.4 make .. 158.5 Compiling and linking a C program ... 158.6 Other Languages ... 169 A quick preview of some of UNIX's tools .. 169.1 grep ... 169.2 awk .. 169.3 sed ... 179.4 m4 ... 179.5 dc and bc .. 179.6 a small number of the others .. 179.7 some local commands .. 1710 Text Formatting .. 1810.1 nro� / tro� .. 1810.2 TEX/LATEX ... 1811 Graphics .. 1911.1 Filters .. 1911.2 Plotting programs ... 1911.2.1 axis ... 2011.2.2 plot3d ... 2011.2.3 interactive plotting programs .. 2011.2.4 gnuplot .. 2011.2.5 mathematica and maple ... 2011.2.6 matlab and octave .. 2011.2.7 IDL ... 2011.3 Lower-Level Graphics .. 2011.4 Higher-Level Graphics ... 2012 Symbolic Manipulation with Mathematica .. 2113 Numerical Work ... 2114 Parallel Processing ... 2114.1 Condor .. 2114.2 IRCE ... 2115 X Windows .. 2116 The Internet .. 2216.1 Logging in Remotely ... 2217 Our Physical Setup; Computer Etiquette .. 2217.1 disk space and backups ... 23i

Logging In and Out
Type username to login: prompt
Type password to Password: prompt
Type passwd to % prompt to change password
Type logout to % prompt to leave

Help
apropos subject find manual pages on subject
man subject type manual page
help local help system

Create or Edit File
Type cat > filename to create a new file; type text, control-D to end.
Alternatively, type vi filename or emacs filename to invoke an editor.
Type teachvi or teachemacs to learn an editor.

Look at File
more filename or cat filename

Print File
mpage -2 -Plp filename or lpr filename
Either of these can be sent to an alternative printer with -Plpn.

Listing Directory
ls
or ls -al for more information

Copying and Moving
cp source destination to copy
mv source destination to rename or move
rm filename to remove

Changing Directory
cd to go to home directory
cd directory to change to subdirectory
cd .. to go up one level
pwd to find out where you are

Directories
mkdir directory to make new directory
rmdir directory to remove an empty directory
du [directory] to find out disk usage under directory

Wild Cards, Shell Expansions
* matches all files in directory (except dot-files)
*Z matches all filenames ending in Z in directory
~/file is a file in your home directory
~davidra/file is a file in davidra’s home directory

Input/Output Redirection
command > filename writes output to file
command < filename gets input from file
command >> filename appends output to file
command1 | command2 pipes output of first command to input of second

Searching in File
fgrep string file1 file2 ... finds all occurrences of string in the given files

Job Control
command & runs command in background
control-Z stops job in preparation for % or bg
jobs lists background and stopped jobs; gives n for:
%n resumes job n
bg %n runs stopped job n in background

C Compiler
cc -c prog.c compile prog.c into object code prog.o
cc -o prog prog.o link prog.o into executable prog
option -g in each stage allows use of debugger

Mail
mail read mail
mail user@machine send mail

page ii

1. This manualThis manual is intended to tell the sophisticated scienti�c user who nonetheless is unfamiliar with UNIX1 what he orshe needs to know in order to begin writing programs. It is intended to be not inclusive nor tutorial nor eloquent,but concise. As a mostly personal introduction, it may also be considered somewhat biased. After reading this doc-ument, you will be able to use an editor (vi or emacs), to write a scienti�c program in your favorite language, com-pile it successfully, and run it. You will also know how to move around on the disk, customize your initialization�les, and use mail. Most important, you will get some idea of the full capabilities of UNIX and will know where tolook up anything you need to know in the on-line documentation.If you just want to get started, read section 5 of this manual (Commands and Information Useful to the Beginner),saving the rest for when you need it. You may also �nd the condensed reference sheet (page ii) useful. If you forgeteverything else, remember `̀ apropos whatever'' for �nding what commands do whatever and `̀man command''for information on command.2. ConventionsBy ^X we shall mean <ctrl>-X, or the character generated by hitting the control button and while holding it downin the manner of a secondary `̀ shift'' key hitting the X key.By <CR> we shall mean the carriage return key (usually treated the same as line feed under UNIX).By alt-X or meta-X we will mean a keystroke generated with the `̀ alt'' or (on Sparc consoles) `̀ diamond'' key. Thisgenerates an otherwise ordinary character with the parity (7) bit set.3. Introduction: Why UNIX? (or, `̀ what is an operating system?'')An Operating System comprises a Kernel and auxiliary programs. The Kernel generally runs in a privileged modefrom which it may access protected parts of memory. A user (or auxiliary) program routes its requests to accessprotected parts of memory (or I/O) through system calls.Except for UNIX, operating systems are strongly machine dependent. Indeed, from the mid 1970's until the early1990's, UNIX was the only operating system to run on more than one type of hardware. Now Macintosh, Windows,and VMS each run on two or three families of chips. In contrast, UNIX runs on everything from an Intel 80386 tothe largest Cray. The kernels of most operating systems are written in the assembly languages of the machines forwhich they are intended, making it di�cult to transport the code to other architectures. The UNIX kernel, on theother hand, is written in C, a language designed to be completely portable to any machine, but faster than FOR-TRAN and su�ciently exible to code the most tortuous intricacies of a device driver.The other part of the UNIX philosophy that enables it to run on almost any machine is its simplicity. Although thekernel has grown quite large compared to the �rst version, it still follows the general rule that an OS kernel shoulddo as little, not as much, as possible. Simplicity works for, not against the user: since all �les are treated in thesame way under UNIX, the user need know only one I/O interface, not ten as under VMS. Moreover, with only onekind of �le, the many programming tools that enable a user to sort, cut, splice, search, and edit �les are muchsmaller and easier to use than in VMS. There are, as a direct result, more of them. As a consequence of the verysimple way programs talk to the user, the output of one program may be connected to the input of another in whatis called a pipe or to a �le through I/O redirection (the idea has been copied by MS-DOS). Another example of thebene�ts of simplicity comes in the small overhead associated with new processes.When I started with UNIX, there was rather less of it to learn. Only two avors existed, and the one from Berkeleyseemed to be taking over. Since then, dozens of vendors have released their own versions of the operating system,each with its own enhancements, incompatibilities, and bugs. There are even several free versions, which are quitegood.2 Networking has been added along with �le locking, symbolic links, and windowing systems. Not all of thesehave been integrated as well as they might have been, and they continue to evolve. While this state of a�airs mightseem bewilderingly chaotic, I count the great e�ort that has gone into both commercial and free versions a sign ofvibrancy and evidence that UNIX remains a programmer's preferred development platform.Mark the emphasis on development over mere support for pre-packaged applications. The UNIX user, never satis�edwith what the computer already knows how to do, manipulates data whatever their disparate sources, ties old1 UNIX used to be a trademark of Bell Laboratories.2 The server for this class runs the Red-Hat release of Linux. Among other free Unices are four important Linux releases as well as severalvariants of Free BSD. 1

programs together into new, builds objects upon objects. It is not a strategy for winning the mass Microsoft mar-ket. It is a way to do physics. The designer of an experiment needs screwdrivers, drill presses, lathes, and millingmachines; someone who just wants to drive a car or store milk in a refrigerator does not. So too the computingneeds of the physicist di�er from those of the checkbook-balancer and video-game player. The most visible advan-tage of UNIX over all other operating systems is its wealth of programming tools. We will try to describe a few ofthese in this short manual.4. Logging In and Out and Getting StartedWhen a user �rst logs in, a few short messages will generally appear, followed by a prompt for input. Under UNIX,these actions are controlled by a user-mode (not kernel-mode) program called a shell. In its simplest form, a shellrepeatedly takes commands from the user and decides what programs need to be run in order to implement thesecommands.3 Since the c-shell, or csh, is the default shell at USF physics, I will describe that shell, although the usermay write a perfectly serviceable shell in ten lines of any high-level programming language.4Each time the shell is invoked, it looks in the user's top-level directory5 for a �le called .cshrc. Note that the dot ispart of the name. If .cshrc exists, the shell reads and executes the commands contained in it as if the user hadtyped them (but these commands are generally not displayed on the screen). Having read the .cshrc, the shellchecks to see if it was invoked as a new login or a subshell. If it is a new login, the shell looks for a �le called .loginand executes the commands in it just as it did the .cshrc. Typically, the .cshrc contains aliases (shortened namesfor commands), while the .login contains commands to check for system notices and sets various options related tothe terminal.The commands in .cshrc and .login are critical to using UNIX; a majority of users' complaints can be traced toinadequacies in these two �les.Normally the .cshrc is read �rst, then the .login, but only on the login shell, and not on remote shells (see rsh(1)).Therefore most commands usually go in the .cshrc. Everything following the pound sign (#) is a comment (andignored by the shell).# Sample lines from .cshrc## C-Shell options to setset history=50 #set c-shell's memory of old commandsset noclobber #don't overwrite files by redirection unless forced (i.e., >!)set ignoreeof #don't interpret ^D as ``exit'' or ``logout''set prompt="`/bin/hostname` \ !% " #\ ! in prompt string replaced by command numberset mail=(20 /var/mail/$USER) #csh checks mailbox every 20 secs## aliases#alias emacs emacs -nw #tell emacs not to open a graphical windowalias rm "mv \ !* ~/tmp" #makes rm (remove) move file to personal temporary directory## path (list of directories in which the shell looks for programs)set path=(. ~/bin /usr/local/bin /usr/local/*/bin /usr/bin /bin)setenv PRINTER lp7 # change the default printer3 To those from the Macintosh/Windows world, we must emphasize that UNIX is not graphical, although there are many good graphicalprograms and even interfaces. The general paradigm is that the user types commands, each one line long, which the machine obeys as soon asthe user hits the return key.4 Actually, csh is the same as tcsh on Linux. Users may with the chsh(1) command change their default shells to any in the list/etc/shells.5 For those not familiar with hierarchical �le systems (on which more later): this is simply a place where �les are kept.Section 3 2 An Introduction to UNIX at USF Physics

Before the login shell dies, it runs the commands in .logout if the �le exists. There is a fuller description of theshell in section 6.5. Commands and Information Useful to the BeginnerThe �rst paragraph in this section contain preliminary information about special characters; the rest are about the�ve or six most essential commands.5.1. Useful control charactersSubject to being reset by stty (in the .login) or usurped by programs for their own purposes, the following controlkeys perform useful tasks: ^U erases the line you're in the middle of typing so you can start over^W erases just the word you're in the middle of typing (broken in tcsh)^C Kill whatever program (except the shell) you're running and returnto the shell; incidentally acts like ^U.^ \ Like ^C for when ^C doesn't work. Most programs will dump intoa core �le.^Z Suspend whatever program you're currently running; the shell in-cludes facilities for continuing suspended jobs. This is useful, espe-cially on terminals that don't support windows. Percent sign (%)resumes a stopped job.^R shows what you've typed so far^S suspend output (also known by its ASCII designation, XOFF)^Q resume output (XON)^O throw out subsequent output until input is requested; a second ^Oresumes output^D end of �le | used to terminate keyboard inputThe rubout key is usually either delete or backspace (^H). To change it, type stty erase KEY, hitting the key you want to be rubout inplace of KEY. Linefeed (^J) is the UNIX end-of-line character, although carriage return (^M) is usually mapped to the same thing.5.2. ls (list �les) and the UNIX �lesystemI assume the reader is familiar with the concept of a computer �le. By directory, I mean a named collection of �les;all postdiluvian operating systems support some sort of directory structure. Directories can contain other directo-ries (sometimes called subdirectories) as well as �les. Under UNIX, a directory is itself a �le. See the table belowfor a summary comparison between UNIX's and some other operating systems' directories.VMS MS-DOS Mac/Windows UNIX/ the `̀ root'' of all disksDISK7:[000000] A:\ picture of a disk /usr the root of some disk a[] . . the current directory's nameFILE.EXT; FILE.EXT icon named `̀ �le.ext'' file.ext �le in current directoryFILE. FILE. icon named `̀ �le'' file no dot (.) is necessary in UNIX*.*;* *.* * star (*) is interpreted by shell, not programs[.SDIR] SDIR a folder named `̀ sdir'' sdir a subdirectoryDISK7:[DIR.SDIR]FILE.EXT; A:\DIR\SDIR\FILE.EXT /usr/dir/sdir/file.ext full name (path) of �le[-.SDIR] ..\SSDIR ../ssdir go up one level, then down oneFiLE.nAm..e! most characters allowed, case signi�cantNote (a): Distinctions between physical disks or partitions in UNIX are nearly always invisible to the user.
An Introduction to UNIX at USF Physics 3 Section 5.2

When you �rst log in, you should �nd yourself in your own private directory, called your top-level (or home or login)directory. You can create subdirectories below your top level, and subdirectories can go arbitrarily deep. Files notbelow your top level usually belong to other people.To see everything in a directory, give the command ls -a. ls, which stands for list, is the UNIX directory com-mand. You should see a collimated list of �le names in alphabetical order reading down one column and continuingat the top of the next. The �le . (dot) is the name of the current directory, while .. (dotdot) is the way to get fromthe current directory to its parent. If you issue the ls command without the -a option, these two directory namesand any other �les whose names that begin with a dot will not be listed. If this abbreviated form of the directorylisting does not suit you, try ls -aiglLRF. I believe ls has more options (�fty in some implementations) than anyother UNIX command; section 5.13 discusses UNIX command options more generally.Files have a small number of one-bit attributes, mostly concerning protection and executability; they show up nearthe left-hand margin with ls -l. In the listing-rwxr-x--x 1 username 131072 Jan 13 12:24 filenamethe leading minus sign (-) indicates that the �le is not a directory (it would have been d if �lename had been adirectory). The following rwx indicate that the owner (username) has permission, respectively, to read, to write on,and to execute it. The r-x that follow indicate that people in the same group as username may read or execute butnot modify the �le. Other people may only execute the �le, as evidenced by the two minuses and x at the end.6To look one directory above wherever you are, you can say `̀ ls ..''. You can change your current directory to .. bysaying `̀ cd ..''. cd without arguments will always return you to your login (top-level) directory. One directoryabove .. lies .. /.. ; slashes separate directory names. Eventually, you will �nd a directory whose parent is itself.This is the root directory and can always be referred to as / (slash), whatever your current directory; every direc-tory on the system claims it as an ancestor, so a set of instructions (pathname) telling how to get from there to any�le constitutes the full name of that �le. To �nd the full name of your current directory, say pwd (`̀ print workingdirectory'').To create a directory, say mkdir name (where name is the name or pathname of the directory you wish to create).To remove a directory, say rmdir name. The operating system will not permit you to remove a directory that stillhas �les (other than . and ..) in it (but see rm -rf).Some Useful Directories (on our systems)/tmp a publicly-writable directory, good for small temporary storage (erased often)/scratch/username large storage space (not backed up)/bin really basic UNIX commands are here/usr/bin more commands/usr/local programs locally installed by the system manager/usr/local/package locally installed complicated software/usr/local/doc additional local documentation/usr/lib libraries (object code archives) reside here/usr/include header �les for C and Fortran programs here and in directories underneath~ each user's home directory: equivalent to /home/username/home/5156 assignments, supplementary material, and programs for for your course5.3. looking at �les: cat and more (and the shell's I/O redirection)cat file copies a �le to standard output (i.e., the screen). more file does the same thing, but pauses at the bot-tom of each page, waiting for the user to hit the space bar. Typing `̀ h'' instead will give help on more. So long asthe computer knows what kind of terminal you are on, more will be reasonably intelligent about underlining, high-lighting, and size of the page.6 For directories (leading d), the x bit indicates permission to treat the directory as a directory. The chmod program changes the protec-tion attributes of a �le (an example is given in section 6).Section 5.2 4 An Introduction to UNIX at USF Physics

cat oldfile > newfile uses the shell's output redirection facility to copy old�le to new�le, overwriting the oldcontents of new�le. (However, if the c-shell noclobber variable is set, the shell will refuse to overwrite an existing�le. Use `̀ >!'' instead of `̀ >'' to override noclobber.)cat > newfile copies standard input (your terminal keyboard|end input with ^D) to new�le, while cat <oldfile > newfile is the same as cat oldfile > newfile.cat file1 file2 file3 > file4 concatenates (hence the name of the command) the three �les, placing the resultin �le4, while cat file2 >> file1 appends �le2 to the end of �le1.cat and more write only to `̀ standard output,'' which `̀ >'' redirects. Some programs write also to `̀ standard error.''Use `̀ >&'' to redirect both standard output and standard error.75.4. moving and copying �lescp is used to copy �les. cp file1 file2 copies �le1 to �le2, overwriting any previously existing �le28 and leaving�le1 intact. cp file1 file2 file3 subdir copies the three �les named to the directory subdir. There is anoption in cp for copying everything under a directory to another directory.mv (move) is like cp, but it leaves no old copies behind. Note that mv could also be called `̀ rename.'' mv is usu-ally more e�cient than copying followed by removing.rm (remove) erases the �le. Because this is a strongly non-adiabatic process, many people have made rm an aliasfor moving the o�ending �les to a temporary directory; see the sample .cshrc in section 4 . You can give rm's fullname, /bin/rm, if you want to be sure of actually deleting a �le.5.5. man and apropos: where to �nd helpThe entire UNIX programming manual is on-line. If there's a section whose name you already know, use `̀ man'' tolook at it: man manwill give you information on the `̀ man'' command. More often, you may not know the name of the command youwant to look up. In that case, use `̀ apropos'' and your closest guess.9 Say you remembered there was an editor youliked but you forgot its name. Typing apropos editfor instance, will give a list of six or seven things the system thinks have to do with the string "edit:"a.out (5) - assembler and link editor outputed (1) - text editoremacs (1) - an interactive display-oriented text editorex, edit (1) - text editorld (1) - link editorteachemacs (1) - learn how to use the EMACS editorvi (1) - screen oriented (visual) display editor based on exQuite obviously, only one or two of these entries is of interest to you. Note the numbers following the manual pagenames. The meanings of the �rst three sections follow.
7 Bourne-derived shells work di�erently: >stdout 2>stderr or >stdout 2>&1 to redirect both.8 Put the line alias cp cp -i in your .cshrc if this bothers you; cp will then ask permission before overwriting.9 On some systems, you may need the line alias apropos man -k in your .cshrc.An Introduction to UNIX at USF Physics 5 Section 5.5

number meaning1 a command one can type to the shell2 a system call (for use from C)3 a library routine (for use from languages)We alluded before to a great schism in the UNIX universe. Sections 4 through 9 may di�er between Berkeley-basedUNIX and System V, where sections can additionally have subheadings, making man more di�cult to use.Sometimes, there may be a name that appears in more than one section of the manual. In that case, you may givethe section number as the second argument to man:10man 2 waitNot everything you'd ever want is in the manual pages. Other useful commands include help and info; useful direc-tories include /usr/doc and /usr/local/doc.Many UNIX programs o�er on-line help; for most, either `̀ h'' or `̀ ?'' is the `̀ help'' command.5.6. mailElectronic mail can be sent and received using the mail command. At login, the c-shell will tell you if you havereceived new mail, as long as the `̀ mail'' variable is set in your .cshrc �le (see the example .cshrc in section 4), andit will keep checking for new mail at intervals speci�ed by that variable. To read this mail, simply type mail withno arguments. The program will print the subject lines of some of the recent mail, then its prompt, the `̀ &'' sign.Typing ? or help will list all recognized commands. Press <CR> to read the messages sequentially. Mail which youhave read, but haven't saved somewhere else, is by default saved to the �le `̀ mbox'' in your home (top-level) direc-tory. You can reread this mail using the command mail -f. There are many other options for sophisticatedusers|see the man pages.Mail with an argument is used to send mail to other users. After giving a subject line, type your message, and thenend it with a ^D (or a `̀ .'') as the �rst character in a line. There are various `̀ ~'' escapes|for example if you type`̀ ~v'' at the beginning of a line, it puts your message in a temporary �le on which the editor vi is then invoked.11`̀ ~p'', for example, prints the message so far. You can read in a �le with `̀ ~r'', while `̀ ~?'' lists all recognized tildeescapes. The address to mail someone on the local machine is simply the username, but mail can be sent to remotemachines with the general syntax mail user@hostOne way to �nd out how to send mail to somebody is to have her send mail to you �rst. Our host address isphysics.cas.usf.edu.You may set aliases and options for mail in the ~/.mailrc �le. It is important to set the crt variable to a positiveintegral value (e.g., set crt=5) else mail will not scroll long messages.Some users prefer alternatives to mail: mh, elm, or pine. Whatever one's choice of reader, unsolicited (and oftenfraudulent) commercial e-mail is a sad consequence of the open, insecure nature of the original, and still universal,mail standard (SMTP, the simple mail-transfer protocol). Fortunately, the spamassassin(1) mail �lter works quitee�ectively, in my experience catching over 90% of spam with no false positives. The following two steps will set itup on physics (see also help spam):mkdir ~/spamcp /usr/local/lib/sample.procmailrc ~/.procmailrcIt is still advisable to check ~/spam/spambox once a week in case of false positives; to do this in the mail program,use mail -f ~/spam/spambox.10 This assumes you are using the Berkeley version of man. The System-V equivalent is man -s 2 wait. You may also use man -a wait tosee all manual pages on wait.11 If you have a di�erent favorite editor, setenv EDITOR favorite in your .login will inform mail (and a host of other programs).Section 5.5 6 An Introduction to UNIX at USF Physics

5.7. UNIX editor: viWe support two full-screen editors: vi, the standard UNIX editor, and the lisp-based emacs. If you already knowEMACS and want to use it rather than vi, you may wish to skip this section for now.12 For people who like mice,nedit and xemacs are available.Vi, or vide infra, is a full-screen editor designed for program and document editing. It incorporates a line-mode edi-tor, ex, which is itself a superset of the old UNIX editor, ed.There seem to be two types of editors in the world: those that are easy to learn and can't do anything (MacWrite,EDT, and Word are examples), and those that take some time to master but which once mastered greatly improvethe user's speed and comfort. vi is in the latter category.We have three levels of introduction to vi. The �rst is a �le that you may edit on-line (it can't be overwritten, sodon't worry). You may wish to start with this. It gives step-by-step instructions. The second (included below) is ashort summary of several useful commands compiled by Professor John W. Wilkins of Ohio State. The third, thefull reference for ex and vi, is in the Users' Supplementary Documents volume of the Berkeley 4.4 manuals withthe picture of the Daemon on the cover. Another complete reference is the :help command within the extended viinstalled in Linux.To invoke the on-line tutorial, type teachvi5.8. If the terminal starts acting strangelySome programs put the terminal into a mode in which it misunderstands what's meant by a line and may refuse toecho anything. If this happens, try ^Jtset^Jstty saneRemember that ^J means <ctrl>-J. Regular keys such as <DELETE>, <CR>, and ^U will probably NOT work untilafter you've succeeded with the above command, so if you mistype part of the command, start over with the �rst<ctrl>-J. If the terminal still misbehaves, you can try various calls to stty (which are probably in your .login, so`̀ source ~/.login'' may help).135.9. PrintingThe preferred command to print a text �le is mpage -2 file | lpr; this saves paper over the standard command(lpr) by printing two sheets on one. Check with College Computing about the default printer; you may specify adi�erent printer with the -Pname option (where name is the printer's name, for which see /etc/printcap) or withthe PRINTER environment variable set in your .cshrc or .login (see section 4)).5.10. What's Going On with the Systemwho will tell you who's on the system. finger name will tell you more about the named user or, in the case of a�rst name, about all the users sharing the given �rst name. finger @theory.tifr.res.in will tell who is loggedin at the Tata Institute. On Berkeley-derived UNIX, or under Solaris if /usr/ucb precedes /bin in your searchpath, ps waux will tell you what other processes are running on your machine. The System-V equivalent is ps-elf. The top program is a useful alternative to ps. ps gives the process numbers needed by kill; kill -9process number will almost always destroy a process.5.11. General Information about UNIX commandsA UNIX command consists of the command name followed optionally by some number of arguments:command arg1 arg2 arg3 ...Each UNIX program is responsible for reading and interpreting its command line; although there is no universal12 We also have several line editors and TECO. If you know TECO, you don't need this manual. Just read an octal dump of the operatingsystem.13 Tilde (~) is expanded by the shell to the path of your home directory.An Introduction to UNIX at USF Physics 7 Section 5.11

List of `vi' commands All commands are in single quotes (` ')(To type continuously with 72 characters/line, create .exrc in root dir with cmd: ` set noai wm=8 ')Start/edit �le: `vi �lename'leave editor write modi�ed �le: `ZZ' throw away changes: `:q!'write and stay in editor: `:w' switch to new�le: `:e new�le'insert new material just before/after cursor: `i' / `a' at start/end of line: `I' / `A'insert a new line below/above cursor `o' / `O'To leave insert mode `(esc) ' (push the escape key) Mac users: `(esc) ' is upper lefthand keyUndo last deletion/change: `u' all deletions/changes: `Qu(cr) vi(cr)' (must be out of insert mode)Repeat previous command: `.' (just a period)Scroll screen a half screen: `(ctrl)-u'(") `(ctrl)-d '(#) a full screen: `(ctrl)-b' (") `(ctrl)-f' (#)To redraw screen: `(ctrl)-l'line no. of cursor?: `(ctrl)-g' number lines: `:set nu(cr)' remove linenos: `:set nonu(cr)'Write lines n thru m to new�le: `:n,mw new�le (cr)' to append: `:n,mw>> new�le (cr)'UNIX cmds inside editor: `:!unix cmd' outside editor: `:sh' return with `(ctrl)-D'Abbreviations: `:ab lt lazy typer(cr)' replaces typed word `lt" with `lazy typer' everytime it is typed.Alternately store abbreviations in .exrc �le with the syntax: `ab lt lazy typer' for each line.Moving the cursor to position speci�ed by `hmovei' (Pre�x number to `hmovei' for multiple use of cmd.)move cursor by character: `h' () `j' (#) `k' (") `l' (!) word/Word: `w' / `W' (!) ; `b' / `B'()move cursor to: end of word/Word: `e' / `E' `W', `B' and `E' sees only blanksstart/end of line `0' / `$' screen top/bottom `H' / (`L')nth line: `nG' start/end of �le `1G' / `G'matching parenthesis or brace `%' previous/next sentence `(' / `)'upto/onto character ch: `t/f ch' back upto/onto ch: `T/Fch'Note: `;' repeats `t' `f' `T' `F' cmd `,' ditto in reverse direction`previous' cursor position: ` ` ` ' `previous' line: ` ' ' 'put mark a at cursor: `ma' shift to mark a: ` `a ' or to line of mark a: ` 'a'shift to token below or above cursor: `/ or ?token' `n' repeats `/' or `?' cmdNOTE: `n' must preceed `n', `[', `$', or `.' for these special characters to be recognized in a token.Corrections Commands General form: `chmovei\new text"(esc) ' Any `hmovei' above works.This inserts \new text" from cursor to position speci�ed by `hmovei'.Additonal correction cmds substitute some characters: `s' a line: `S' or `cc'replace from cursor to line end: `C' break line to left of cursor: `i(cr)(esc) 'cmds not requiring (esc) replace single character `r' interchange two characters: `xp'join line with one below: `J' Indent n lines: `n>>' remove indentation: `<<'Deletion Commands General form: `dhmovei' Delete from cursor to `hmovei' position.(Everything can be deleted into bu�ers a to z by appending ` "a ' (say) to the delete cmd.To recover older lost lines: ` "np' recovers text from bu�er n From newest `1' to oldest `9'To shift thru bu�ers: start with `1"; cmd `u.' removes last recovered bu�er and recovers next oldest;Additional delete cmds a character at/before cursor: `x' / `X'a line at/above cursor: `dd'/ `dk' rest of line: `D'Yanking (copy text from cursor to `hmovei' into default [or a-z] bu�ers) Putting (bu�er into text)general forms yanking: into default bu�er: `yhmovei' putting: to right/left of cursor `p' / `P'into bu�er a: ` "ayhmovei' below/above cursor: ` "ap/P'additional yank/put cmds one/n lines: `Y' / `nY' below/above cursor: `p' / `P'Global commandssubstitute: `:s/token/new stu�/(cr)' substitutes new stu� for token`:g/token/ s//new stu�(cr)' does it globally`.,.+n s/token/new stu�/(cr)' substitutes from current for n+1 linesNote: `g' at end of any of three lines above multiply substitutes \newstu�" for \token" in a line.what �le is this? `:f(cr)' print nth line: `:nl(cr)' shows all wild charactersread in new�le: `:r new�le(cr)' new�le appears below the cursorswitch to new�le inside editor: `:e new�le(cr)' useful for yanking bu�ers between �lesUpdate: August 25, 2006 [jww]

standard, the following general guidelines usually hold.When a command operates on a single �le, the �le is entered, often as the last argument. For a command that usesone �le as input and another as output, the input �lename generally precedes the output �lename (unless the output�le is speci�ed by an option, usually called '-o'). Options are generally speci�ed by a single letter preceded by aminus sign; if one wishes to specify several options at once, one often has the choice of combining themcommand -abcdor giving them separately command -a -b -c -d .If an option takes an argument, it is generally given as the argument following the option:cc -o �lename foobar.cThe option `-', if part of a command's syntax, usually has one of two meanings; which one is clear from the context.It can mean either `̀ substitute standard input (the keyboard, a pipe, or redirected input) for the �lename that couldgo in this position,'' ls | cat file1 - file2(concatenates [in this order] �le1, thelisting of the current directory, and �le2)or `̀ treat the next argument as a �lename even though it looks like an option,''mv - -filename1 filename2(On Linux, this second, historical, meaning requires instead a double hyphen, --. One more easily masks a minussign leading a �le name with a construct like mv ./-filename1 filename2.)6. Introduction to the CshIn section 4 we introduced the c-shell (csh) as the command-line interpreter but left the reader in the dark as to itsoperation. Consider what happens when csh reads the command linels -l *.ZThe asterisk in the argument is a wildcard character; *.Z stands for every �le in the current directory whose nameends in .Z (but does not begin with dot (.)). If the directory contains �les a.Z, b.Z, and foo.bar.Z (and other �leswhose names do not match), the shell will treat *.Z as though the user typed in its place a.Z b.Z foo.bar.Z. Anasterisk can appear anywhere in a name or by itself; there are fancier wildcards described in the manual. Sinceasterisk (*) is interpreted by the shell, not by the application program, it cannot be used for programs whose argu-ments are not �les: for instance, finger * will probably give gibberish, unless you happen to be in a directorywhose entries are names of users (/home is such a directory on our system).Now that the shell has the line ls -l a.Z b.Z foo.Z, it cuts the line up at the spaces and puts the pieces in anarray eventually to be passed to the program. To determine what program to invoke, csh looks at the �rst of thesepieces, called the zeroth argument (the �rst argument in this case is the option -l). The csh �rst checks this zerothargument (ls in our case) against its list of aliases. If it �nds a match (for instance, if we have set alias ls ls -Fin our .cshrc), it makes the substitution and starts over.14 Next csh checks against its list of internal c-shell com-mands; these include logout, set, and alias. If the command is not one of these, csh next checks the PATH envi-ronment variable (set by the set path=(...) command in the example of section 4). That variable contains a listof directories; the c-shell e�ectively checks these in the order given for a �le of the name given by the zeroth14 If the zeroth argument begins with a backslash (\), the backslash is stripped and the alias-checking step is skipped. This provides oneway to override an alias.An Introduction to UNIX at USF Physics 9 Section 6

argument.15 If the zeroth argument had been a pathname beginning with /, . /, or .. /, of course, this step wouldhave been skipped and the given �le executed immediately. The c-shell knows enough not to try to execute a �lewhose execution bit has not been set; if it comes across one, it will continue looking through the search path.16An executable �le may be a list of c-shell commands or a binary �le created by a compiler. In the former case, it isgood practice to make the �rst line read #!/bin/cshThe subshell called to read the �le will treat the line as a comment; it is there to tell the operating-system kernel torun csh and not some other shell. After creating a command script for the shell, you must make it executable withthe command `̀ chmod 755 �lename''; the 7 gives the owner (you) read, write, and execution permission, while thetwo 5's give all other users read and execution permission only. The current csh can be made to read a �le of com-mands with the source command. Sourced �les (such as .cshrc) need not be executable.Some c-shell internal commands and expansionspushd path like `̀ cd path'' but also pushes old directory on stackpopd go back to previous directory on stackdirs show directory stackalias A B make A an alias for B (only for commands)jobs show a numbered list of jobs (some stopped by ^Z, for instance)command & run command in background | lets you do something elsebg %n run stopped job n in background%n resume stopped job nkill %n kill a stopped or background jobhistory show a numbered list of recent commands!! redo the last command!n:s/a/b/ redo command n, substituting b for �rst occurance of a!string redo the most recent command that began with stringset a=b assign a (string) variable a valuecommand $a $a is replaced by the value of variable a~fred/ expands to the path of fred's home directory~/ expands to the path of the user's home directorySome users prefer an extended c-shell, such as tcsh. For many purposes, you may �nd the Bourne shell, /bin/sh,or one of its derivatives, more appropriate for programming than the c-shell. The manual pages describe the syntaxfully. Be warned in all shell scripts that spaces may have signi�cance: in particular, lexical elements such as paren-theses must often be surrounded by spaces, while equals signs (=) often must not be.7. Another Editor (Emacs)In the late 1970's, the programmer Richard Stallman wrote a set of editing macros for TECO so that a user couldsee the text as she changed it. This version of Emacs was sold for several years by the Computer Corporation ofAmerica for the RSX and TSX operating systems. Stallman, founder of the Free Software Foundation, later rewrotethe entire package in LISP and gave it away for free to anyone who wanted it. The current version, written mainlyin C, still incorporates a fully-functional LISP interpreter. For a long time, many di�erent versions of Emacs oatedabout, each with di�erent default key bindings, something that made learning di�cult. Now, however, that15 There is a subtlety here concerning hashing. If you create a new executable �le after the invocation of the shell, and if that �le is not inthe current directory, you need to run rehash before the shell will be able to �nd it, even though it is in the search path.16 If it then fails to �nd an executable �le (having found a non-executable one), the shell will issue the message file: Permission denied.Section 6 10 An Introduction to UNIX at USF Physics

computers are all large enough to run the full GNU Emacs release, the editor has stabilized.Emacs supports multiple editing screens and bu�ers in a single window, formatting, and (optionally) a mouse.Because it includes a programming language, it can perform arbitrarily complex operations on text. Some program-mers, using it for e-mail, compilations, and reading news, never leave Emacs, except perhaps to eat.Unlike vi, Emacs has no separate command and text-entry modes. Any printing character is entered into the text asone types it. Motion, deletion, and other commands are implemented as sequences of control or similar characters,such as <meta>-V to move backward one page or ^X^C to exit. Commands, such as <meta>-V, that require a setparity bit can also be entered as <escape> followed by the required key, e.g., <escape> V. (This has led to thesomewhat deprecatory acronym Escape-Meta-Alt-Control-Shift).The teachemacs command launches the Emacs tutorial. From within any Emacs session, the backspace key (or ^H)opens a help window.Although emacs supports some mouse-based commands, mouse users may prefer xemacs. A subset of Emacs aswell as vi editing commands can often be found in other programs, such as tcsh and pico. Included below is a one-page summary of some Emacs commands.8. ProgrammingWe hope in this section to introduce to the reader some of the programming tools under UNIX. Those who wouldlike to examine these tools at length will be referred to the appropriate texts.8.1. Why C?In this short paragraph, I will try to present a few of the best reasons for a FORTRAN-77 programmer to take thetime to learn C. Once I have convinced the reader to learn C, he should refer to the source. There is only oneusable text or reference for C:Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, second edition (Prentice Hall, 1988)The book goes through each of the commands of C and many common programming tricks and practices. Thereare numerous examples along the way and a complete reference manual at the end. The C Programming Language,written by the language's authors, was considered to de�ne C long before the 1989 ANSI standard came out.17Like FORTRAN, C translates mathematical formulae into computer code and performs calculations. Indeed, C pro-grams that do nothing but calculations can look very much like FORTRAN. (`̀ It's possible to write FORTRAN , i.e.,bad code, in any language''). Because of the more e�cient and exible way in which C handles arrays and passesarguments, however, good C programs can usually run faster than FORTRAN, other things being equal.C allows several things to happen on a single line, so C programs are generally shorter than the equivalent FOR-TRAN; they are also more quickly written. C encourages user-de�ned data structures called structs; like a namedCOMMON block, a struct combines several variables into one, but many di�erent variables can each have the samedata type (struct), and they can be passed, copied, modi�ed, put into arrays, and referenced like any other variables.structs are used in implementing a kind of variable-length one-dimensional array called a linked list, in which newelements may be inserted anywhere without having to move the old elements. structs may be nested. Anotherexample of a data structure essential for many scienti�c applications (but missing from FORTRAN) is the binarytree, useful for sorting items alphabetically, numerically, or by any other criterion. Since objects of interest to thescienti�c programmer are not only numbers, but have some structure, C provides a more natural environment thanFORTRAN for coding simulations and calculations.Unlike FORTRAN, C supports a �xed array whose dimension is determined at runtime; see footnote b to the table inthe next section.String manipulation and input/output are simpler and much faster in C than in FORTRAN, making the languagewell-suited to writing interactive programs.17 A second C standard was published by the ISO in 1999, adding several minor features. However, many compilers do not implement thechanges, so it is still a bad idea to incorporate them into any code one might write. By now (2006), essentially all compilers do implement theANSI standard, so there is no strong reason to write code in the style of the �rst edition (1978) of The C Programming Language.An Introduction to UNIX at USF Physics 11 Section 8.1

List of `emacs' commands All commands are in single quotes (` ')Start/edit �le: `emacs �lename' Since insert mode is the default,any cmd must be prefaced by the meta characters (ctrl)- or (meta)-. The general rule is that(ctrl)- a�ects a single `object' (e.g. letter), while (meta)- a�ects a larger one (e.g. word)To leave editor `(ctrl)-x s' saves and stays in editor `(ctrl)-x (ctrl)-w' prompts to write �le`(ctrl)-x (ctrl)-c' exits editor but prompts you to save �le if needed`(ctrl)-z' suspends editor return to editor with `fg'Multiply do `cmd' n times: `(meta)-n cmd' 4 times: `(ctrl)-u cmd'Abort command: `(ctrl)-g' Redraw screen: `(meta)-x redraw' redraw and center: `(ctrl)-l'UNIX: running cmds: `(meta)-!unix-cmd (cr)' (if want shell: `(meta)-x shell')compile with make: `(meta)-x compile'HELP: `(ctrl)-h (ctrl)-h' enters the help menu`(meta)-x describe-function (cr) cmdname' produces description of \cmdname"`(meta)-x describe-key (cr) key pattern' produces cmdname for the key pattern if bound.`(meta)-x apropos (cr) cmdname ' produces list of cmds containing string \cmdname"`(meta)-x describe-bindings ' produces list of all keys bound to commandsNote: `(space)' or `?' will exercise command completion feature but (cr) still necessary.Because (ctrl)-h is bound to help, only delete deletes (Jove users take note!).Shifting the cursor (arrow keys and scrollbar work too; some commands require .tex �le or (meta)-x TeX-mode)shift cursor 1 character: `(ctrl)-b' () `(ctrl)-f' (!) `(ctrl)-p' (") `(ctrl)-n' (#)shift cursor by a word `(meta)-b' () `(meta)-f' (!)shifting screen a full screen: `(ctrl)-v' (#) `(meta)-v' (") 1line: `(meta)-1(ctrl)-v' (") `(meta)-1(meta)-z' (#)shift cursor tostart/end of line `(ctrl)-a'/ `(ctrl)-e' sentence `(meta)-a'/ `(meta)-e'start/end of s-expression: `(meta)-(ctrl)-b'/ `(meta)-(ctrl)-f' paragraph: `(meta)-f'/ `(meta)-g'top/bottom of screen `(meta)-0(meta)-r' / `(meta)--(meta)-r' start/end of �le `(meta)-<'/ `(meta)->'search interactive forward `(ctrl)-s string' reverse `(ctrl)-r string'`Interactive': adjust token by `deleting' and retyping; `(cr)' when successful; `(ctrl)-g' to abort(ctrl)-s will not work over some serial linesCorrection commands (There is no `undo' for deletions but there is for kills { see Yanking)delete next/previous character `(ctrl)-d'/`(del)' next/previous word `(meta)-d'/`(meta)-(del)'white space `(meta)-n' blank lines `(ctrl)-x (ctrl)-o'transpose two characters: `(ctrl)-t' two lines: `(ctrl)-x (ctrl)-t'new above/below current line: `(ctrl)-o'/`(ctrl)-e (cr)' paragraph break : `(ctrl)-m' or `(ctrl)-j'capitalize �rst letter: `(meta)-c' whole word: `(meta)-u' word all lower case `(meta)-l'substitute globally: `(meta)-x replace-string (cr) old(cr) new(cr)' no queryinteractive substitution: `(meta)-% current-str (cr) new-str (cr)' starts from cursor & asksYanking and putting (use `(ctrl)-@' to mark point; interchange mark and cursor `(ctrl)-x (ctrl)-x')kill from point to cursor `(ctrl)-w' into kill bu�er `(meta)-w' (without killing)kill from cursor to end of line `(ctrl)-k'" " " " end of sentence `(meta)-k' beginning of sentence `(ctrl)-x (del)'kill s-expression `(meta)- (ctrl)-k' e.g. from \f" to matching \g"yank last killed bu�er `(ctrl)-y'; `(ctrl)-y' with repeated `(meta)-y's yanks back successive bu�ers (upto 10 in a ring).Using multiple Bu�ers All cmds are prefaced by `(ctrl)-x'create bu�er new `b new' select bu�er old `b old' replace �le in bu�er `(ctrl)-r (cr)'list bu�ers: `(ctrl)-b' save some modi�ed bu�ers `s' kill bu�er old: `k old(cr)' (Be careful!)Windowing All cmds are prefaced by `(ctrl)-x'divide into 2 windows: `2' switch to next window: `o'delete current window `0' delete all other windows `1' make window bigger: `^'open 2nd window with: �le �lename: `4f�lename(cr)' bu�er oldbuf: `4boldbuf(cr)'Exception to `(ctrl)-x' pre�x: `(meta)-x shrink-window' Update: 1 Dec 95 [jww,dar]

The C++ language builds on C by concentrating even more on objects (matrices, windows, databases, Feynmandiagrams), providing new and more natural ways to operate on them and to isolate the code that deals with theirinternal aspects. A matrix-vector multiplication in C++ might look something like a = M*x; .8.2. section(3)Section 3 of the manual deals with library routines for C and other programming languages. Math functions aregenerally included in their own library and found in section 3M. To link to the math library, it is necessary to passthe -lm switch to the C compiler, cc. I've compiled a list of some of the more important standard library functions,omitting the ones useful chiey to the system programmer and those the reader would understand and expectanyway, including everything in the math library. When you wish to use a function, read the relevant manual pagewith the command man 3 function(Occasionally, a function will reside on a di�erently-named manual page, and man will sometimes be confused andnot know about it. In this case, use apropos(1) to �nd the name of the correct manual page.)

An Introduction to UNIX at USF Physics 13 Section 8.2

function what it does (briey)intro not a function, but an introduction to section 3fopen open a �le for bu�ered I/Oafread read a number of bytes from a �lefwrite write a number of bytes to a �le from a pointerfseek go to any location within a �lefprintfprintffscanf These are to the FORTRAN format statement what thewashing machine is to the washboard and wringer (even for-tran partisans admit this).getsfgets read a line without formattinggetchargetc read a characterputcharputc write a characterungetc un-read a character that's been readpopen open a pipe (simple interprocess communication)strcatstrncat concatenate two stringsstrcmp compare two strings alphabeticallystrlen get the length of a stringmalloc dynamically allocate memorybmktemp make a unique �le name, useful for keeping track of experi-ments, etc.setjmplongjump set a marker in a program and then jump to it laterperror print an error message appropriate to the last non-fatal errorsignal specify error-handling routines for various sorts of fatalerrorscsystem execute a shell command from a program (without leavingthe program)ncurses not one function but forty or so: terminal-independentscreen manipulation (curses on Solaris)qsort e�ciently sort an array by any criterionWe summarize some of the public-domain numerical o�erings later. The heavy-duty parallel programmer willappreciate multiple threads (pthread create(3)) and support for communication with other machines.a UNIX �les do not have records, so there is no restriction on what one may write to them. This should not be viewed as a de�ciency. Thefunctions fwrite(3) and fread(3), by their syntax, make it nearly trivial to implement �les with �xed-length records, but because it is the user,not the system, who decides how to organize the �le, calls to these routines may be mixed with fprintf(3), fputs(3), getchar(3) etc.b C supports three strategies for storing variables. Static storage corresponds roughly to the only kind available in FORTRAN: the exactsize needed must be known at compile compile-time, and if inside of a routine, there is only one version of a datum, even if the routine is calledrecursively many levels deep. Automatic storage (stack) exists only inside of routines; when a routine exits, its automatic storage vanishes. Dy-namic memory combines the advantages of the two. It is non-volatile and global, but the user takes only what he needs. One common applica-tion of malloc(3) is the allocation of variable-sized arrays.c This �nds at least two applications in long-running simulation programs: it may be used to trap the termination signal sent to all pro-cesses just before a system shutdown, and in conjunction with alarm(3) or setitimer(2) it can run a subroutine at regular intervals to save in-termediate results for interactive examination and for eventual recovery in case of a system crash.Section 8.2 14 An Introduction to UNIX at USF Physics

8.3. section(2)Section 2 of the manual deals with system calls. The strictly scienti�c programmer should need to refer to this sec-tion only occasionally, for example, if he wants to have two processes talk to each other; scientists sometimes have towrite system programs, however, and the graduate student lucky enough to have been assigned to write a devicedriver for a new tape drive or a low-level graphics package will need to learn much in this section.8.4. makeWhen developing a program, you will often make a series of small changes and want to recompile only the parts ofthe program modi�ed by the changes. When the program is in three languages, uses four pre-processors, and lies in�ve directories, this can be unwieldy. UNIX provides a relatively simple utility, make, that determines for you whatneeds to be recompiled. For example, you may have several di�erent source �les that need to be recompiled everytime you make changes in another �le which is included in all of them (with #include in C or \input in TeX). Thebest way to see how this works is through the following sample make �le (these are called either Make�le or make-�le, normally):# Sample Makefile## This is the simplest non-empty form:#client: client.c; cc client.c -o client## The command ``make client'' effects the above compilation, but only if client.c has been changed# since the last compilation. This would actually be done by default, even if there were no makefile.# Slightly more complicated:#CFLAGS = -OLDFLAGS = -OLIBS = -lX11 -lXt -lsocket -lm -L/usr/local/lib -lsomelibvec: vec.o windows.occ $(LDFLAGS) -o vec vec.o windows.o $(LIBS) #the TAB is requiredwindows.o: windowdefs.hvec.o: windowdefs.h## Here, "make vec" notices that vec depends on vec.o and windows.o, and so first tries to make# those. It then notices that they depend on windowdefs.h, and also knows by default that they# depend on the source files vec.c and window.c respectively, so those will be compiled using# the CFLAGS option defined at the top. The LIBS variable collects the libraries needed for this# particular program.#clean: rm *.o *.dvi *.log## "make clean" removes all the object, dvi, and log files lying around in the current directory.Make will seem indispensable once you start handling programs that depend on more than one or two source �les.For more information, see the man pages, or look over other people's make �les for hints.8.5. Compiling and linking a C programThe UNIX C compiler looks at the �lename su�x to determine what a �le is. .c indicates a C program source, .o anobject �le, .a a library of object �les (see ar(1) and ranlib(1)), and .f indicates a FORTRAN source. To compile ashort (one-�le) program, the usual procedure is cc -o name name.c|or| cc -c name.cAn Introduction to UNIX at USF Physics 15 Section 8.5

cc -o name name.oThe �rst line compiles the source code name.c into the (binary, not-human-readable) object �le, name.o. The sec-ond line invokes the linker to create the executable name from the object code. The linker is responsible for con-verting references to external libraries into addresses and for combining multiple object �les, as in the second Make-�le example earlier. It is possible to stop at various other intermediate stages, such as after preprocessing or beforeassembly.The cc compiler on Linux is actually a link to the Free-Software-Foundation C compiler, gcc. To compile old codeusing Kernighan's and Richie's original C, use the -traditional option. We also have the commercial Portland-Group compiler, pgcc.Include the -g option to incorporate debugging code; the debugger is gdb. See the manual page and on-line help forinformation. When a program has been debugged, recompile with the -O option instead of -g. This will make itrun faster. (Further optimization ags may make it run even faster, but be careful of optimizer bugs.)While the most-used functions are in the standard C library, others, including math functions, need to be linkedexplicitly. Give the -lm option after all source and object �les to get math functions. (See the example in the sec-tion above on make.)8.6. Other LanguagesWe have compilers for C++ (g++(1) and pgCC(1)), FORTRAN-77 (g77(1) and pgf77(1)) and FORTRAN-90(pgf90(1)). The compilers recognize �les containing sources for these languages by their extensions (.c, .C, or .f),and it is easy to mix languages; when creating the executable �le, invoke the compiler appropriate to the languageof your main routine. Be sure as well to understand how variables are passed between routines in each of the lan-guages you use and whether an underscore (_) needs to be appended to symbol names. It is possible to write inassembler (as(1)), and we might have a lisp interpreter somewhere.9. A quick preview of some of UNIX's toolsMany, although certainly not all, of UNIX's tools take the form of `̀ �lters,'' reading from standard input and writingto standard output (both default to the terminal). Pipes (|) may be used to connect the output of one program tothe input of the next, and I/O redirection (> and <) may be used to write to and read from �les (see also section5.3). The following example uses the simple �lter, tr (translate), to convert all lowercase letters in a �le to upper-case before sending the �le to a pattern matching program, fgrep, that will output all the lines that contain theword `̀ SUBROUTINE.'' The output of fgrep is then piped to a program (word count) that will count how many lineswere printed. The answer, a number, is then appended to the end of a �le called foobar.tmp. (UNIX hackers willnote that fgrep -i could be used to replace the tr a-z A-Z; this is just for demonstration purposes.)tr a-z A-Z < filename | fgrep SUBROUTINE | wc -l >> foobar.tmpMore complicated examples of the use of �lters can be found in /home/5156/examples/scripts.9.1. grepgrep is a program that prints only those lines in a �le that match a given pattern. fgrep is easier to to use whenthe string being sought contains funny characters (which grep might interpret as directives), and egrep is a morememory-intensive but faster version with more options. Other operating systems call their implementations of grepthings like `̀ match'' or `̀ �nd.'' Regular expressions provide a complicated pattern-matching capability describedfully by the ed(1) documentation As an example of its power, I once used regular expression matching to translateheader �les between FORTRAN and an assembly language.9.2. awkawk is a pattern-matching and data-base manipulation program. awk programs can be as short and simple as oneline or as long and complicated as a C program; in fact, the syntax of awk is similar to that of C. The manualpage awk(1) describes the language in full, and there is a tutorial in User's Supplementary Documents in the BSD4.3 documentation. The following example will add a column of numbers:awk '{sum+=$1} END {print "The sum is ",sum}'Section 8.5 16 An Introduction to UNIX at USF Physics

awk has in addition all of the pattern-matching power of grep and sed. Most systems now have an extended awkcalled nawk and GNU's faster implementation, gawk.9.3. sedsed is a non-interactive editor, loosely based on ed, designed for use as a �lter. The manual page, sed(1), explainsthe syntax, and there is a tutorial in Users' Supplementary Documents.9.4. m4m4 is an alternative to the standard C preprocessor, cpp. Either m4 or cpp may be used in conjunction with anylanguage to expand macros and allow for conditional compilation.9.5. dc and bcdc is the desk-calculator tool. It emulates an arbitrary-precision RPN calculator and is described in the manualpage, dc(1), and in a reference manual in User's Supplementary Documents. bc(1) is a preprocessor for dc with aC-like interpreted interface.9.6. a small number of the othersHere's a small sampling of some of the others.diff di�erences intelligent comparison of �lessort sort and mergejoin a horizontal cattee T connection copy output to two placesuniq unique lines �lters out repeated linesgzip make a �le smaller by bit-packinggzcat type a compressed �le without uncompressing itnice run something at lower priorityar archive create/update/extract �les in archivetar tape archive similar to ar; not limited to tapesstrip erase name table from binaryod octal dump octal, hex, decimal, and/or alpha dumpnm name print contents of name table in unstripped binaryfile �le type gives educated guess as to �le's purposedate time and datefactor factor a big integerfind do searches down a directory treelocate easy-to-use at �le �nderRead manual section 1 to �nd out more. The only way to master UNIX is to skim through this section, cover tocover, stopping at pages that seem interesting.9.7. some local commandsWe've added a few small but useful utilities on physics.physrev Enter lynx to get a paper from The Physical Review. The arguments are the section (a, b, c, d, or e, or l forLetters, m for Reviews of Modern Physics, or blank [""] for pre-1970s papers), volume, and starting page or ar-ticle number. For example, physrev b 65 024201.cond-mat Enter lynx to read a paper from Paul Ginsparg's preprint archive, arxiv.org: for example, cond-mat0601033.google Enter lynx with a search query to www.google.com; note that certain characters may need to be protectedfrom unwanted interpretation by the shell. Example: google '"University of South Florida"' physics
An Introduction to UNIX at USF Physics 17 Section 9.7

usfinger Find all people at USF with the given last name, e.g., usfinger killinger. The database includes e-mail,telephone, a�liation, and o�ce, although the information isn't always current.librarian Find a library on the system with the given symbol: librarian printf. This is particularly useful when link-ing object �les generated by di�erent compilers results in a long list of unresolved references.help help on various topicsIn addition, I've set up single-character commands <BS> and . These stty shortcuts are useful in case therubout key isn't set correctly: type the rubout key at the beginning of a line, then <CR>. The rubout key shouldnow work.10. Text FormattingWe support two similar but mutually incompatible typesetting systems, tro� and TEX. Almost all scienti�cpapers are made in TEX, while most documentation (including this manual) is produced in tro�. Many journals,including those published by the American Physical Society, provide packages that sit on top of LATEX, a large setof macros that add some structure to TEX.There are also a number of �lters, such as colcrt and fmt, that are helpful for less formal text formatting. fmt isparticularly useful when called from within an editor (e.g., `̀ 1G!Gfmt -75'' in vi).10.1. nro� / tro�tro� is the standard UNIX typesetting system; nro� takes tro� input but spits out readable text instead of instruc-tions for a phototypesetter. The man pages are written in nro�; Kernighan and Ritchie's The C ProgrammingLanguage was set in tro�, as was The Physical Review in the late 1980s. On Linux systems or other with GNUtro�, one generally uses the gro� command. tro�, as a relatively low-level typesetting language, is di�cult to usewithout macro packages. The two most commonly-used general purpose packages are -me and -ms; manual pagesare prepared with -man. Equations and tables are handled with the preprocessing �lters eqn and tbl.While tro� is moderately powerful and perhaps easier to learn, TEX (or LATEX)) has become the typesetting lan-guage of choice.10.2. TEX/LATEXTEX is a powerful typesetting language written by a well-known computer scientist as the practical expression ofmany of his personal views of programming. Despite this, it is possible to write papers in TEX. His own documen-tation, The TEXbook, is more of a tutorial/manifesto than a reference manual, for which I recommendPaul W. Abrahams, TEX for the Impatient (Addison-Wesley, 1990)There follows a sample bit of TEX with comments after the percent signs (%).\nopagenumbers % note that TeX's commands are as verbose as troff's are terseThis is a short demonstration written in \TeX. Macros and directives consist of words (letters, no digits orspecial symbols) preceded by a backslash (\backslash) and terminated by anything that isn't a letter.New paragraphs begin after a blank line; it is possible to change the indentation, margins, and so on. Plain\TeX\ contains no facility for sections with headings, subsections, and so on, but the user can write his ownmacros for these. Simple equations, such as $ E ~=~ mc^2 $, can be set inline, while more complicatedexpressions require a bit more work:% a simple math equation:$$ \ int_{-\ infty}^{\ infty} \delta(x) f(x) \ , dx ~ = ~ f(0) $$% a medium-size math equation:\def\bold#1{{\bf#1}} %this defines a macro with one argument\def\unit#1{{\bf\hat#1}}$$ % because vcenter is allowed only in math mode\vcenter{% % because halign isn't allowed in math mode\halign{%\hfil$#$\tabskip=2em&$#$\tabskip=0sp\hfil\cr%{\bold k^0 = L^{-1} \unit x} & {\bold a^0 = L \unit x } \cr{\bold k^1 = L^{-1} \unit y} & {\bold a^1 = L \unit y.} \cr}%end halign}%end vcenter$$%end math modeSection 9.7 18 An Introduction to UNIX at USF Physics

To run TEX on �le.tex, give the command tex file.texIf the .tex su�x is omitted, TEX will assume it. The TEX processor is annoyingly verbose. It will stop and askyou what to do if there is an error. Error messages generally are unhelpful. Learn to �nd the lines beginning with asmall ell, a dot, and a number: l.10 means the error occurred on line ten. The best thing to do when TEX �ndsthe error is to type x to leave right away; �x the error, then run TEX again.18 Do not pay attention to any sugges-tions it makes of ways it could �x errors by itself.Once you have been successful, TEX will reward you with an output �le called �le.dvi, as well as something called�le.log, which contains its opinions of your �le and the color of your window shades and how they clash with yourcarpet, and some thoughts on the superiority of computers over organic life forms. You may view the .dvi �le withxdvi file.dviTo print the �le on the laser printer, issue the commanddvips -f < file.dvi | lprdvips converts the .dvi �le into PostScript, the language spoken by laser printers. It is also possible for humansand drafting programs (such as x�g, see below) to write in PostScript, and the epsf package puts PostScript pic-tures in the middle of a TEX �le.Most scienti�c papers are prepared in LATEX rather than `̀ plain'' TEX, although since version 2E, nearly all TEXcommands also work inside LATEX. A good introduction and reference isH. Kopka and P.W. Daly, A Guide to LATEX, 3rd ed., Addison-Wesley, 1999.In addition, there are examples, tutorials, and two full reference books (in PDF format) in the directory/usr/local/doc/tex on physics; see especially workshop1205/resources.dvi under that directory.LATEX was meant to be a `̀ markup'' language, in the sense that the user would specify logical structure, forinstance sections and equations, rather than how those things would appear on the page. This is an advantage inthat many things are already well thought out but adds additional layers of complexity if the user wants to do some-thing new or isn't satis�ed with the �nal appearance. A simple example illustrates the di�culty in writing a truemarkup language for typesetting: some journals specify references with superscripts, which should appear afterpuctuation,19 while others use bracketed numbers, which need to go before punctuation [42]. LATEX does nothandle this in an automated way.11. GraphicsMost users eventually have something they want to see plotted on the screen or on the laser printer, whether it isdata, the output of some big program, or just a function to be visualized. There are di�erent plotting programsavailable for the various di�erent purposes, some of which are outlined below. The plotting is usually done in twostages (sometimes more) connected by a pipe, in which the �rst stage converts the data (ascii format) into somestandard plotting format, and the second stage consists of a `̀ �lter'' which actually does the plotting to the screen orprinter.11.1. FiltersMany of our plotting packages (as well as user programs) produce output in the plot(5) format (say man 5 plot ona BSD system, not Linux, for details). All it knows about are points, lines, and labels | PostScript is much moresophisticated.The xplot �lter converts plot(5) input to a picture on an X-windows screen, although it is also possible to use theplot -T tek �lter in conjunction with the Textronix mode of an xterm window.The command lpr sends things to the laser printer, which knows how to handle PostScript nicely, but doesn't knowabout plot(5). The �lter laser converts plot(5) to PostScript and sends it to your favorite printer.11.2. Plotting programs18 Alternatively, type e to get from TEX directly into an editor.19 like thisAn Introduction to UNIX at USF Physics 19 Section 11.2.1

11.2.1. axisThis is the most basic of the plotting programs. It converts two columns of data to plot(5) format and does fancylabels, too. The dvi �le /usr/local/doc/axisdoc.dvi documents axis. As an example, if `̀ foo'' contains twocolumns of data, axis < foo | lasershould print a graph on the laser printer, while axis < foo | xplotwill do the same on the screen.For a demonstration, look in the directory /home/5156/demo/axis. (The default Postscript output of laser(1)prints and displays �ne but does not work with the epsf package of TEX, for which invoke laser with the -T ag.)11.2.2. plot3dSimilar to axis, but plot3d does 3-dimensional plots. It also does contours. The labeling is not so nice, and otherthings don't work well. Like axis, it was written by a graduate student at Cornell many years ago. Both programsneed sorely to be rewritten. See the man pages, or invoke it with the `̀ -h'' option.11.2.3. interactive plotting programsSome people prefer a point-and-click interface to command-line �lters. The interactive plotting program xmgrace(formerly called xmgr/xvgr) is the favorite of the solid-state theory group at Los Alamos, while that at McMasterprefers `̀ supermongo'' (sm).11.2.4. gnuplotWhile it does not produce publication-quality output, gnuplot works very nicely for �nding out what, for instance,1/�(J0(x)� J1(x)) might look like.11.2.5. mathematica and mapleMathematica is the fanciest of all the plotting programs. It does all kinds of symbol manipulation too (see below),but it is really most useful for creating plots of functions that you want to visualize. The badly-designed line inter-face is accessible as math, while the even-harder-to-use point, click, and control-carriage-return interface ismathematica. mathematica can plot 2-dimensional data, contours, 3D plots, and 2D and 3D graphics with shadingand other fancy attributes. It also makes movies. Buy the book. (Maple does most of the same things asMathematica, just di�erently.)11.2.6. matlab and octaveMatlab concentrates on machine-precision arithmetic rather than symbolic manipulation, making it faster thanmathematica or maple. Although originally written for classroom use, many researchers now �nd it the easiestway to play with problems in linear algebra, signal processing, and several other �elds for which special add-onpackages are available. We also have a free Matlab re-implementation called octave.11.2.7. IDLThe Interactive Data Language (IDL) is designed for the quantitative analysis and manipulation of images and hasfound wide use in biophysics and astronomy; at the IDL prompt, enter ? to bring up the help screen.11.3. Lower-Level GraphicsFor fancy applications, especially those requiring speed, it may be necessary to use the low-level X-windows pro-gramming packages xlib, Athena widgets (Xaw), or Motif widgets. These are messy and ill-thought-out.11.4. Higher-Level GraphicsWe support a MacPaint-type drafting and drawing program called x�g. Its plain postscript output may work betterwith eps�g in TEX than its encapsulated postscript.
Section 11.2.1 20 An Introduction to UNIX at USF Physics

12. Symbolic Manipulation with MathematicaThe subtitle of Mathematica, the book describing Stephen Wolfram's over-arching program, is `̀ a system for doingmathematics by computer.'' While this may be something of an exaggeration, problems involving nearly trivialmanipulation of a large number of symbols are ideally suited to symbolic manipulation. It is often wise, however, totry to simplify an expression or problem by hand before feeding it to mathematica. The program is also useful forplotting (section 11.2.5) and helpful with numerical work, although slow.Mathematica is SMP's successor. Maple is a functional equivalent, while I haven't seen Macsyma for many years.See the section on X windows below for general information on bringing up graphical programs.13. Numerical WorkIn addition to Mathematica, we have the LAPACK library, combining what used to be called EISPACK and LIN-PACK. The routines, originally written in Algol, have been translated to FORTRAN but can be called from any lan-guage.The book Numerical Recipes by Press, Flannery, Teukolsky, and Vetterling provides a good introduction to manycommon numerical algorithms, but I discourage the use of any of their routines. The C functions are poorly written(in the FORTRAN style), and some of the routines in both languages are reported to have bugs. Many of their rou-tines are watered-down versions of LAPACK or other freely-available codes. Use the book to understand the algo-rithm, then implement it yourself or use the thoroughly debugged and optimized versions of LAPACK, etc.The text on Matrix Computations by Golub and van Loan is very useful for both dense and sparse techniques.14. Parallel ProcessingThe course server, physics.cas.usf.edu, has two CPUs; in principle, they can work in parallel through the pthreadlibrary, through the Message-Passing Interface, MPI, or through a higher-level language such as Planguage orCilk (not yet installed here).14.1. CondorOne of the most common, and certainly the simplest, form of parallel computation is what computer scientists referto derisively as `̀ embarassing parallism:'' running many copies of the same code simultaneously and independentlywith di�erent parameters. Condor is meant for this type of parallel work, where the di�erent processes do not needto communicate with each other. The Linux machines in Physics Room 102, which normally act as terminals to thephysics server, also serve as the nodes in a parallel Condor cluster served from physics. See the topic help condorfor documentation and examples.14.2. IRCEUSF Academic Computing runs a number of production parallel-cluster clusters through the Integrated ResearchComputing Environment (IRCE), duplicating the software used on current supercomputers such as the Cray XT3and the IBM Blue Gene.20 In addition to symmetric multiprocessing (one machine, many processors) and homoge-neous clusters, MPI and its competitor PVM can also control heterogeneous clusters. See http://rc.usf.edu fordocumentation.15. X WindowsA windowing system, at a minimum, puts several terminal screens on one very large screen and provides for movingwindows over and under other windows. All current windowing systems also provide rodent support and havebecome bloated with hundreds of obscure computer-science-type protocols for manipulating windows and abstractgraphical objects. Xerox, of all companies, seems to have come up with the idea in the smalltalk operating system.Apple and Microsoft later sued each other over which of them was the �rst to plagiarize it. Two commercial andone free windowing system appeared in the mid-1980's, Dec Windows, Suntools, and X Windows. (Sun also madesomething called NEWS that tried to be Suntools and X at the same time.) Happily, all but X Windows have nowdied.20 Proposed de�nition of supercomputer: a computer that takes the de�nite article. Yesterday's supercomputer is about as powerful as to-day's p.c., or maybe toaster oven, although much cooler.An Introduction to UNIX at USF Physics 21 Section 15

X Windows (a name the writers of X Windows deprecate, favoring The X Windowing System) is distributed: youcan run a program on one CPU and have it send graphics (not just text) to your host machine. If you use the sshcommand to log in to physics, the DISPLAY environment variable, which tells the remote machine where to send thegraphics, is set automatically to point to a proxy, incidentally bypassing the need to call the insecure xhost com-mand (so don't). (From some systems, including Cygwin, it may be necessary to call ssh -Y.)For further information on X, consult the manual pages on xterm, X, and dwim.16. The InternetComputers may still not all talk the same language, but at least they've agreed on a protocol (alphabet?) for com-munication. Gone and unlamented are UUNET, BITNET, DECnet, and Berknet. The `̀ inter'' in `̀ Internet'' comesfrom the various physical networks (e.g., Sprintnet, Nysernet) it connects. Tools for remote login include ssh, whichis to be used in preference to telnet when possible both because it is far more secure and because it passes terminalinformation. The �le-transfer program, ftp, is useful for copying �les and directories between machines. The world-wide web holds gems of useful information buried deep in layers of video-game dross. Lynx provides a fast key-board interface, while netscape, mozilla, and �refox let the user point and shoot with the mouse. The amateurdetective can often use �nger and nslookup to advantage when seeking electronic mail addresses.16.1. Logging in RemotelyThe College computer administrators have set our computer to allow incoming logins by one protocol only: ssh.Other methods, such as rlogin, telnet, and ftp, have been disabled for security reasons (although they still workfor connections leaving our computer). The secure shell is very easy to use from another Unix machine (includingLinux): simply type ssh physics.cas.usf.edu -l yourlogin. Then enter your password. Never use an insecurechannel to log in from computer A to computer B, then ssh to computer C: since the link from A to B is notencrypted, a snooper sitting between A and B will still be able to see your password for C. Similarly, if you usesomething like telnet to log in from our course machine to a machine D, do not use the same password on machineD as you have on the course computer. More information on ssh is available with the command help ssh.Using ssh from a PC/Macintosh involves more work and depends on the speci�c ssh client's implementation.17. Our Physical Setup; Computer EtiquetteThe course computer, physics.cas.usf.edu, is a Dell Power-Edge 1800 with two 3.00-GHz Xeon processors, eachwith 2 MB of on-chip cache. Currently, the machine has 3 GB of RAM and approximately 136 GB of RAID-5 diskspace (soon to be increased). For up-to-date information on system con�guration and capacity, try sysinfo(1). Forcurrent resource usage, top(1) packages the most important information in a format that updates every few sec-onds.If users try to run programs requiring more memory than physically available, the machine will use swap space onthe disk. This should be avoided, since random access to swap space will cause the computer to thrash back andforth between disk and RAM; a thrashing computer may run a factor of 100 more slowly than normal. If it is abso-lutely necessary to address swap space, there are tricks to reduce thrashing. However, none of the projects in thisclass should require such large amounts of memory. If top(1) shows your program's memory consumption steadilyincreasing without limit, you may have a memory leak inside a loop, meaning that you have used malloc(3) or asimilar call and then forgotten to call free(3).The load average displayed in moving averages by top(1) and uptime(1) approximates current CPU usage. On atwo-CPU computer, a load average of 2.00 indicates full use of both processors with no unsatis�ed demand. Anaverage of 4.00 would indicate twice as much demand as available processing capacity, under which circumstanceeach running process will receive only half of a CPU. On a two-processor machine, such as physics, top shows asingle-threaded process using 100% of one CPU as taking up 100%.CPU-intensive programs that will go for more than several minutes should be run at low priority: `̀ nice +10your command'' works adequately. The more `̀ nice,'' the lower the priority of your program (the maximum nicenessis 19). As you can verify with top(1), a nice'd program gets a smaller percentage of CPU on a busy system. How-ever, if the load average permits it, even a nice program will get the full CPU. If you use a Bourne-derived shell,use a minus sign instead of a plus sign with nice.College-of-Arts-and-Sciences Computing runs our server for the physics department; Mr. Joel Woodman is systemmanager.Section 15 22 An Introduction to UNIX at USF Physics

17.1. disk space and backupsSomewhat over 30 GB of disk space is allocated for user accounts; use du(1) in your home directory to see howmuch you're using. If you need extra space for data, you may mkdir /scratch/yourname to create a directory on a�le system that has more room but is not backed up. You may also wish to compress �les you don't need immedi-ately with gzip(1) or bzip2(1): depending on the data, the program can cut 20% to 70% o� the size of a �le.(Gzip replaces compress which replaced pack which replaced compact). Be sure also to rm core if a programbombs; the csh command limit coredumpsize 0 will prevent core dumps entirely.The /home �lesystem is part of a RAID-5 array, meaning that the failure of any one physical disk will not result inthe loss of any data. CAS Computing conducts daily backups to tape, but users should not need to request them,since we also keep complete twice-daily images (taken at noon and midnight) under /backup. For example, thedirectory /backup/20060815120001/home/5156contains an image of /home/5156 taken at noon on 15 August, 2006. The number of images that can be keptdepends on disk-usage patterns, but the system manager will try to keep at least a week's worth (currently, backupsgo back one year). The /backup �lesystem is read-only.21

21 One might wonder how it's possible to keep hundreds of complete images of /home on a �lesystem that's only about twice its size. Thetrick takes advantage of the fact that most user �les do not change very often, so hard links, which take up negligible disk space, can be used.See rsync(1), especially the -a and --link-dest ags.An Introduction to UNIX at USF Physics 23 Section 17.1

